ARTICLE

Simultaneous detection of amide and methyl correlations using a time shared NMR experiment: application to binding epitope mapping

Peter Würtz · Olli Aitio · Maarit Hellman · Perttu Permi

Received: 16 April 2007/Accepted: 25 June 2007/Published online: 24 August 2007 © Springer Science+Business Media B.V. 2007

Abstract Simultaneous recording of different NMR parameters is an efficient way to reduce the overall experimental time and speed up structural studies of biological macromolecules. This can especially be beneficial in the case of fast NMR-based drug screening applications or for collecting NOE restraints, where prohibitively long data collection time may be required. We have developed a novel pulse sequence element that enables simultaneous detection of amide ¹⁵N, ¹H and methyl ¹³C, ¹H correlations. The coherence selection for the ¹⁵N spins can be obtained using the gradient selected and coherence order selective coherence transfer, whereas the hypercomplex (States) method is simultaneously employed for the ^{13}C coherence selection. Experimental verification of proposed time-shared approach for simultaneous detection amide ¹⁵N, ¹H and methyl ¹³C, ¹H correlations has been carried out with three proteins, human ubiquitin, SH3 domain of human epidermal growth factor receptor pathway substrate 8-like protein (Eps8L1) and maltose binding protein complex with β -Cyclodextrin. In addition, the proposed methodology was applied for ligand binding site mapping on SH3 domain of Eps8L1, using uniformly ¹⁵N and fractionally (10%) ¹³C labeled sample. Our results show that the proposed time-shared ¹⁵N/¹³C-HSOC affords

Peter Würtz and Olli Aitio contributed equally.

significant time saving (or improved sensitivity) in establishing ¹⁵N, ¹H and methyl ¹³C, ¹H correlations, thus making it an attractive building block for 3D and 4D dimensional applications. It is also a very efficient tool in protein ligand interaction studies even when combined with cost-effective labeling scheme with uniform ¹⁵N and 10% fractional ¹³C enrichment.

Keywords Coherence transfer · Epitope mapping · Eps8L1 · HSQC · Methyl groups · NMR spectroscopy · Proteins · Protein ligand interactions · SH3 · Time-sharing

Introduction

The concept of time-sharing between two NMR experiments, originally proposed by Sørensen (1990) and Farmer II (1991) has been shown to provide significant gains in sensitivity when applied to small molecules and biological macromolecules. In time-shared experiments, typically two different NMR parameters are jointly sampled during the indirect evolution period (Boelens et al. 1994). In principle, combining two consecutive experiments to a single NMR experiment, where two different coherences are detected simultaneously can provide time-saving up to theoretical 50%. In other words, sensitivity improvement per unit time by a theoretical factor of $\sqrt{2}$ can be obtained in comparison to two separately recorded NMR experiments. In practice, the theoretical factor is difficult to reach in macromolecules as transverse relaxation times are significantly shorter than for small molecules. Nevertheless, sensitivity gains of 30–40% (15 N) and 10–25% (13 C) has been obtained for smaller proteins using time-shared ¹⁵N, ¹³C HSQC experiment (Sattler et al. 1995). Sensitivity improvement has also been observed in experiments

Electronic supplementary material The online version of this article (doi:10.1007/s10858-007-9178-2) contains supplementary material, which is available to authorized users.

P. Würtz · O. Aitio · M. Hellman · P. Permi (⊠) Program in Structural Biology and Biophysics, Institute of Biotechnology/NMR Laboratory University of Helsinki, P.O. Box 65, Helsinki 00014, Finland e-mail: Perttu.Permi@helsinki.fi

designed for measuring scalar and residual dipolar couplings in small proteins (Nolis and Parella 2007; Würtz and Permi 2007).

In this work we introduce novel building blocks for simultaneous detection of ¹⁵N, ¹H and methyl ¹³C, ¹H correlations, and compare the performance of the proposed methodology with the sensitivity-enhanced ¹⁵N-HSOC experiment (Kay et al., 1992), the conventional ¹³C-HSOC scheme (Bodenhausen and Ruben, 1980) and gradient selected, sensitivity enhanced time-shared ¹⁵N, ¹³C HSQC experiment (Sattler et al. 1995). The methodology is applied for simultaneous monitoring of ${}^{15}N/{}^{1}H$ and methyl ¹³C/¹H chemical shift perturbations upon ligand binding on protein sample with uniform ¹⁵N and fractional 10% ¹³C labeling (Neri et al. 1989; Senn et al. 1989). Although not tested here, the methodology can be used for samples with uniform ¹⁵N labeling and ¹³C labeling of methyl groups in isoleucine (δ 1 only), leucine and valine residues as proposed by Fesik and colleagues (Haiduk et al. 2000). In this labeling scheme, in contrast to the protocol devised for production of selectively protonated methyl groups in perdeuterated background (Gardner et al. 1996; Goto et al. 1999), the target protein is expressed with ¹³C-enrichment in isoleucine (δ 1 only), leucine and valine residues methyl groups only, which removes hampering ¹³C-¹³C scalar interaction. The proposed methodology can also be utilized as building blocks in time-shared NOESY experiments.

Materials and methods

The proposed ${}^{15}\text{N}/{}^{13}\text{C}_{m}$ -HSQC pulse scheme was recorded on 0.2 mM uniformly ${}^{15}\text{N}$, fractionally 10% ${}^{13}\text{C}$ labeled sample of human ubiquitin, dissolved in 95/5% H₂O/D₂O with 10 mM potassium phosphate buffer, pH 5.8, in a sealed Wilmad 535 NMR tube at 25°C, and on 0.9 mM uniformly ${}^{15}\text{N}$ and fractionally 10% ${}^{13}\text{C}$ labeled *E. coli* maltose binding protein (MBP). All experiments were carried out on a Varian Unity INOVA 600 NMR spectrometer, equipped with a ${}^{15}\text{N}/{}^{13}\text{C}/{}^{1}\text{H}$ triple-resonance coldprobe and an actively shielded *z*-axis gradient system.

A two-dimensional 15 N/ 13 C_m-HSQC spectrum of the uniformly 15 N, fractionally 10% 13 C labeled ubiquitin was recorded with the pulse scheme shown in Fig. 1a–a' at 25 °C. The spectrum was acquired with 4 transients per FID with 128 and 1700 complex points in t_1 and t_2 , respectively. This corresponds to acquisition times of 51.2 (36.6) and 85 ms for 15 N (13 C) and 1 H, respectively. The 15 N shift-scaling factor κ was set to 0.4. The corresponding sensitivity enhanced 15 N-HSQC (Kay et al. 1992) and 13 C-HSQC (Bodenhausen and Ruben, 1980) experiments were recorded using identical parameters. The experimental time for each experiment was 20 min.

A detailed description of the cloning and purification of the SH3 domain of Eps8L1 will be published elsewhere (Aitio et al. unpublished results). Four two-dimensional ${}^{15}N/{}^{13}C_m$ -HSQC spectra for the interaction studies of SH3 domain together with its target peptide, were recorded using the pulse scheme shown in Fig. 1a–a' at 25 °C. The initial concentration of SH3 was 0.2 mM. During the titration series, unlabeled peptide from CD3 ε was added into the protein sample in 0:1, 0.2:1, 1.0:1, and 2.0:1 ratios. Each spectrum was acquired with 12 transients per FID using 128 and 1,700 complex points in t_1 and t_2 , respectively. This corresponds to acquisition times of 51.2 (36.6) and 85 ms for ${}^{15}N$ (${}^{13}C$) and ${}^{1}H$, respectively. The ${}^{15}N$ shift scaling factor κ was 0.4. The total experimental time for each spectrum was 1 h.

All spectra were processed and analyzed using the standard VNMR 6.1C software package (Varian associates 2000).

Results and discussion

Our aim is to combine sensitivity enhanced ¹⁵N-HSQC experiment with the ¹³C-HSQC scheme optimized for methyl groups. The following conditions must then be considered in order to design optimal experiments. First, theoretical coherence transfer for both amide ¹⁵N-¹H^N and methyl ¹³C-¹H^m correlations should be maximized. Second, water flip back scheme should be applied for improved sensitivity since both amide and methyl protons resonate far from water signal. Third, phase cycling should be kept to a minimum, albeit without the cost by poor artifact suppression, for possible extension to higher dimensionality experiments or for fast screening.

Figure 1a depicts a basic scheme for two-dimensional time-shared ¹⁵N/¹³C_m-HSQC experiment for simultaneous detection of amide ¹⁵N, ¹H and methyl ¹³C, ¹H correlations in uniformly ¹⁵N and fractionally 10% ¹³C (Neri et al. 1989), or ¹⁵N, ILV-methyl ¹³C labeled proteins (Hajduk et al. 2000). The pulse sequence is a modification of the time-shared ¹⁵N, ¹³C HSQC schemes introduced earlier (Boelens et al. 1994; Pascal et al. 1994; Sattler et al. 1995; Uhrin et al. 2000; Xia et al. 2001, 2003; Frueh et al. 2006). We therefore emphasize on differing parts of the proposed pulse sequence. The experiment starts with concomitant INEPT transfer from ¹H to ¹⁵N and ¹³C spins (Boelens et al. 1994, Sattler et al. 1995) combined with the zz-filter and water selective flip-back pulse. The ensuing $(1+\kappa)^*t_1$ periods are used for chemical shift labeling of ¹⁵N coherence. The joint sampling of ¹³C chemical shift frequencies takes place during the t_1 period. After the t_1 period, the following ¹³C pulse converts the ¹³C coherence to $2H_ZC_Z$ coherence. It is noteworthy that the scaling factor κ is

Fig. 1 Building blocks for simultaneous sensitivity-enhanced $^{15}N \rightarrow ^{1}H$, and Cartesian antiphase $^{13}C \rightarrow ^{1}H$ transfer and the corresponding time-shared ¹⁵N/¹³C_m-HSQC and ¹⁵N/¹³C_m-TROSY/ HSQC experiments for simultaneous recording of ¹⁵N, ¹H and methyl ¹³C, ¹H correlations. Narrow and wide bars correspond to 90° and 180° flip angles, respectively, applied with phase x unless otherwise stated. The filled ellipsoids correspond to low power water selective flip-back pulses applied to water resonance. All 90° and 180° pulses for methyl carbons were applied with a strength of 20.8 kHz. The ¹H, 15 N, 13 C and 13 C' carrier positions are 4.65 (water signal), 118 (center of 15 N spectral region), 20 (center of 13 C methyl region), and 175 ppm (center of ${}^{13}C'$ spectral region). The methyl selective refocusing pulses (marked with asterisks) with r-SNOB (Kupče et al. 1995) or REBURP (Geen and Freeman 1991) shaping are applied offresonance with phase modulation by Ω , where Ω indicates frequency difference between the center of methyl proton chemical shift region and water signal. (a) time-shared, ${}^{15}N/{}^{13}C_m$ -HSQC experiment with a building block for the sensitivity enhanced ${}^{15}N \rightarrow {}^{1}H$, and Cartesian antiphase ${}^{13}C \rightarrow {}^{1}H$ transfer with (a') or without (a'') gradient selection on ${}^{15}N$. (b) The corresponding time-shared, ${}^{15}N/{}^{13}C_{m}$ -TROSY/HSQC experiment with a building block for the sensitivity enhanced ${}^{15}\!N$ \rightarrow ${}^{1}\!H$ TROSY, and Cartesian antiphase ${}^{13}\!C$ \rightarrow ${}^{1}\!H$ transfer with (a') or without (a'') gradient selection on ^{15}N . Delay durations: $\tau = 1/(4J_{CmHm}) \sim 2.0 \text{ ms}; \Delta \sim \Delta' \sim 1/(4J_{NH}) \sim 2.0-2.6 \text{ ms};$

defined by sw_C/sw_N-1, where sw_C and sw_N correspond to spectral widths of methyl carbon and nitrogen. As the difference between the spectral widths of ¹⁵N and methyl carbons is rather small, ¹⁵N and ¹³C spectral widths can even be set equal. Thus, the sensitivity loss for methyl groups by relaxation of the longitudinal two spin order $(2H_ZC_Z)$ during the κt_1 period remains low.

The pulse scheme design offers sensitivity enhancement for the amide ¹⁵N–¹H correlations (the IS spin system) by utilizing coherence order selective coherence transfer, and retains high sensitivity for methyl ¹³C, ¹H correlations (I₃S spin system) by employing conventional Cartesian

 δ = gradient + field recovery delay; $\kappa = sw_C/sw_N - 1$ for a and $\kappa = sw_C/sw_N - \frac{1}{2}$ for b. Frequency discrimination in F₁ for ¹³C in all sequences is obtained using States-TPPI protocol (Marion et al. 1989) applied to ϕ_2 In a+a' and b+b', the frequency discrimination in F₁ for ¹⁵N is obtained using sensitivity-enhanced gradient selection (Kay et al. 1992). The echo and antiecho signals in F_1 dimension are collected separately by inverting the sign of the G_N gradient pulses together with the inversion of ϕ_3 Phase settings: $\phi_1 = x$ (y for b + b'); $\phi_2 = x, -x; \phi_3 = x; \phi_4 = x$. In a+a", the frequency discrimination in F_1 for ¹⁵N is obtained using States-TPPI protocol applied to ϕ_1 . In addition, for each t_1 increment the phase ϕ_3 is inverted. Phase settings: $\phi_1 = x$, -x; $\phi_2 = x$, -x; $\phi_3 = x$; $\phi_4 = x$. In b + b", the frequency discrimination in F₁ for ¹⁵N is obtained using States-TPPI protocol (Marion et al. 1989) applied to ϕ_1 . In addition, for each t_1 increment ψ_1 and ψ_2 are inverted. Phase cycling: $\phi_1 = y, -y; \phi_2 = x$, -x; $\phi_4 = x$; $\psi_1 = -y$, y; $\psi_2 = -x$, x. Gradient durations (strengths): $G_N = 0.55 \text{ ms} (16.5 \text{ G/cm}), G_r = 0.2 \text{ ms} (4.6 \text{ G/cm}).$ If the individual editing of ¹³C and ¹⁵N resonances is desired, additional phase cycling (x, -x) can be added to ϕ_2 The adiabatic WURST-2 (Kupče and Wagner 1995) and GARP-1 (Shaka et al. 1985) decoupling sequences with field strength respectively 5.3 and 1.1 kHz were used to decouple ¹³C and ¹⁵N during acquisition. Varian pulse programs for the proposed pulse sequences are available online at http://www.biocenter.helsinki.fi/bi/nmr

antiphase transfer. This approach circumvents inherent sensitivity loss for methyl groups by a factor of 0.88 compared to gradient selection or coherence order selective coherence transfer schemes (Scleucher et al. 1994). The optimum sensitivity can be achieved either with the gradient selection for ¹⁵N or without the gradients, using the *preservation of equivalent pathways* (PEP) scheme by Rance and co-workers (Palmer et al. 1991). The following back transfer step differs between the gradient selected implementation and the original PEP scheme, and hence in the following paragraphs both version are described in detail. Let us first emphasize on the gradient selected

HSQC implementation. The corresponding back transfer element is shown in Fig. 1a'. In this case, the pulsed field gradients are employed for the selection of ¹⁵N coherence during the $(1+\kappa)^*t_1$ i.e., two gradients with opposite polarity are applied during 2δ in order to select either echo or antiecho pathways for the ¹⁵N coherence. Subsequent 90° pulses on ¹H and ¹⁵N convert the desired magnetization to ¹H single-quantum coherence which is antiphase with respect to ¹⁵N and ¹³C, described by the density operators $2H_{\nu}^{N}N_{z}$ and $2H_{\nu}^{m}C_{z}$, respectively. In addition, part of the magnetization is converted into $2H_v^N N_x$ multiple-quantum coherence as in the sensitivity-enhanced ¹⁵N-HSQC experiment (Kay et al. 1992). During the ensuing delays 2Δ and 2τ , the antiphase terms refocus and will be transformed to longitudinal H_Z^N and H_Z^m magnetization by the following 90° ¹H pulse. The multiple-quantum term is converted to antiphase $2H_{\nu}^{N}N_{z}$ coherence, which refocus to H_x^N coherence during the last $2\Delta'$ delay. The final 90° ¹H pulse converts longitudinal components of magnetization into H_v^N and H_v^N , and H_v^m coherences. As the magnetization originating from the amide proton has been dephased by the coherence selective gradients during the indirect evolution period, whereas the magnetization originating from methyl proton has not, we have to rephase the amide proton magnetization without dephasing the methyl proton magnetization prior to acquisition. To this end, we propose the following refocusing scheme during the final spin-echo; a pair of refocusing gradients with the same polarity is applied together with two selective 180° methyl pulses (indicated by asterisk in Fig. 1a) and a hard 180° ¹H pulse. Two gradients with same polarity are flanking the final selective 180° methyl pulse, whereas each gradient pair with the same polarity but unequal strength are flanking the non-selective 180° ¹H pulse. Hence, the amide proton magnetization is rephased by the refocusing gradient as in the gradient selected, sensitivity enhanced ¹⁵N-HSQC experiment. Methyl protons, or more generally those protons that are refocused by the 180° selective pulses are not affected by the gradients. In this way, it is possible to utilize the gradients for the coherence selection of the amide ¹⁵N, ¹H correlations and simultaneously obtain the coherence selection of the methyl ¹³C, ¹H correlations using the conventional hypercomplex (States) method. In addition, the pulse sequence obtains water flip-back in a manner identical to the conventional gradient selected, sensitivity enhanced ¹⁵N-HSQC experiment if care is taken that water magnetization is not perturbed by the two selective 180° pulses. It is worth mentioning that owing to the difference between the phase-modulated ¹⁵N/¹H signal obtained using sensitivity-enhanced echo/antiecho selection, and the amplitude-modulated ${}^{13}C/{}^{1}H$ signal in F₁, the quadrature and purely absorptive lineshape cannot be obtained simultaneously for both amide ¹⁵N, ¹H and methyl ¹³C, ¹H correlations. Thus, separate data processing is required by using the sensitivity-enhanced and hypercomplex (States) procedure for ¹⁵N/¹H and ¹³C/¹H data, respectively. As proposed originally by Sørensen (1990), ¹⁵N and ¹³C bound protons can be separated by adding additional phase cycling step (0°, 180°) to ϕ_2 pulse (Farmer II and Mueller 1994). When acquired in an interleaved manner, two data sets are generated with the sign inversion for the methyl resonances (¹⁵N ± ¹³C). Then by appropriate combination of separate data sets provides either amide ¹⁵N, ¹H or methyl ¹³C, ¹H correlations (see caption to Fig. 1 for details).

The back transfer scheme for the sensitivity-enhanced implementation without the gradient selection is shown in Fig. 1a". In addition to absence of coherence selection gradients, the pulse scheme differs from the gradient selected version in its water magnetization handling. In addition, four-step phase cycling is required for ¹⁵N coherence selection and quadrature detection. To this end, two-step phase cycling is applied to ϕ_1 and ϕ_3 in order to remove imbalance between single- and multiple-quantum coherence transfer pathways (Palmer et al. 1991). To assure efficient water suppression with water flip-back (Grzesiek and Bax 1993) prior to acquisition period, additional spin-echo period with the WATERGATE pulse element (Piotto et al. 1992) is incorporated into the pulse sequence.

The corresponding ${}^{15}N/{}^{13}C_m$ -TROSY/HSQC versions of the experiment are displayed in Fig. 1b. A few modifications with respect to the HSOC version have to be made in order to select the most slowly relaxing ¹⁵N-¹H multiplet component simultaneously with the methyl HSQC. Recently, an elegant 3D/4D time-shared NOESY experiment with the gradient selected TROSY and HSQC implementation for the amide ¹⁵N-¹H and methyl ¹³C-¹H moieties was introduced (Frueh et al. 2006). We prefer using a slightly different approach in order to keep the relaxation losses for ¹⁵N-¹H moieties to a minimum and to retain coherence transfer efficiency in the level of Cartesian antiphase transfer for the CH₃ moieties for retaining the highest sensitivity. The initial part of the ¹⁵N/¹³C_m-TRO-SY/HSQC scheme is identical to the HSQC version in Fig. 1a. However, for the TROSY version the ¹³C chemical shift labeling takes place prior to ¹⁵N chemical shift incrementation. Moreover, the ¹⁵N chemical-shift labeling starts after the first $t_{1/2}$ period. This can be justified by the following reasons. First, we aim for refocusing of ¹³C-¹H scalar interaction during t_1 without methyl selective pulses and without compromising the TROSY effect by mixing the amide proton spin-states during ¹⁵N chemical shift labeling. Although ¹⁵N-¹H magnetization is in the form of longitudinal two-spin order $2H_z^N N_z$ for a time period equal to $t_{1/2}$, we can still use the additional $t_{1/2}$ period for

incrementation of ¹⁵N chemical shift, that is, the scaling factor κ in this case is defined by $\kappa = sw_C/sw_N - \frac{1}{2}$. Analogously to ¹⁵N-¹H moieties, the methyl ¹³C-¹H relaxation can be reduced by shortening the time period during which the spin system is in the form of longitudinal two-spin order $(2H_z^m C_z)$. As in the corresponding HSQC version of the experiment, two different implementations of the ¹⁵N/¹³C_m-TROSY/HSQC scheme, with and without the ¹⁵N coherence selection using the pulsed field gradients, can be conveyed. Let us first emphasize on the implementation utilizing pulsed field gradients for the ¹⁵N coherence selection (Fig. 1b'). After the ¹⁵N chemical shift labeling, a pair of gradients with opposite polarity is employed for coherence selection in indirectly detected dimension. This is followed by the TROSY scheme originally suggested by Yang and Kay (1999) and later modified by Nietlispach (2005) in order to suppress the antiTROSY component. This represents optimal transfer scheme for both ¹⁵N-¹H TROSY transition as well as for methyl ¹³C-¹H correlations. The spin-state selective polarization transfer from slowly relaxing ¹⁵N transition to slowly relaxing ¹H transition is thoroughly discussed in the original papers (Yang and Kay 1999; Nietlispach, 2005). Instead, we focus on fate of the density operator corresponding to ${}^{13}C \rightarrow {}^{1}H$ transfer in methyl groups. As in the corresponding HSQC version (Fig. 1a), the 90° (¹H) pulse following the delay 2δ transforms the $2H_z^m C_z$ operator to $2H_{\nu}^{m}C_{z}$, which refocus during the ensuing delay 2τ . The subsequent 90° (¹H) pulse converts H_x^m coherence to slowly relaxing H_z^m magnetization. Again, the final non-selective 90° (¹H) pulse creates H_x^m coherence, which will be detected during acquisition as it bypasses the last four gradients analogously to the corresponding HSQC scheme in Fig. 1a.

The corresponding time-shared ¹⁵N/¹³C_m-TROSY-HSQC scheme with Single Transition To Single Transition Polarization transfer (ST2-PT) element (Pervushin et al. 1997, Andersson et al. 1998) is depicted in Fig. 1b". The ¹⁵N–¹H TROSY selection is established as in the generalized TROSY scheme (Andersson et al. 1998) and will not be discussed in detail. However, in order to combine the generalized TROSY scheme with the methyl selective coherence transfer without using the methyl selective pulses, a slightly different refocusing scheme is employed. Emphasizing on the fate of the $2H_z^m C_z$ density operator after t_1 period, it can be realized that the 90° (¹H) pulse with phase ψ_1 creates the antiphase coherence $2H_{\nu}^m C_z$, which will be solely susceptible to methyl ¹H spin relaxation as no 180° (¹³C) pulse is applied during the ensuing 2Δ delay. The antiphase coherence refocuses during the delay 2τ , which is incorporated into the following ${}^{15}N{-}^{1}H$ spin-state selective filter with the pair of shaped pulses for the WATERGATE solvent suppression scheme. Although the overall duration of the pulse sequence utilizing the ST2-PT scheme for the TROSY selection (Fig. 1b'') is the shortest, the methyl proton magnetization remains in the transverse plane for ~ 2 ms longer than in the sequences in Fig. 1b'. We thus prefer using the scheme in Fig. 1b' for the simultaneous ¹⁵N-TROSY, ¹³C-HSQC selection. Moreover, additional two-step phase cycle is required for the TROSY selection in Fig. 1b'', which somewhat limits the applicability of scheme as a general building block for multidimensional experiments.

Experimental verification of the proposed pulse schemes were carried out using three proteins, human ubiquitin, the Src homology domain (SH3) of human epidermal growth factor receptor pathway substrate 8-like protein, Eps8L1 (supplementary material), and the maltose binding protein (MBP) in complex with β -cyclodextrin (supplementary material). The SH3 domain and ubiquitin represent small ~ 8 kDa proteins, with good chemical shift dispersion and small transverse relaxation rates, whereas MBP/β -cvclodextrin, having a molecular mass of 42 kDa, embodies a high molecular weight protein with broad lines and significant resonance overlap. In addition, SH3 binding with its target peptide was studied by titrating target peptide into the protein sample in a stepwise manner and monitoring perturbations in both amide ¹⁵N/¹H and methyl ¹³C/¹H chemical shifts in SH3 domain by recording a time-shared ¹⁵N/¹³C_m-HSQC experiment at each titration point.

In order to estimate attainable sensitivity enhancement on smaller proteins, we measured the proposed time-shared $^{15}N/^{13}C_m$ -HSQC spectra on ubiquitin and compared the determined signal-to-noise ratios with the corresponding ¹⁵N-HSQC and ¹³C-HSQC spectra measured using the gradient selected and sensitivity-enhanced ¹⁵N-HSQC and conventional ¹³C-HSQC experiments. Theoretical sensitivity enhancement using a time-shared ¹⁵N/¹³C_m-HSQC over two consecutive ¹⁵N- and ¹³C-HSQC experiments is $\sqrt{2}$ as methyl and amide proton correlations can be established simultaneously i.e., per unit time two times more scans can be invested in a time-shared ${}^{15}N/{}^{13}C_m$ -HSOC. On smaller proteins this can be reached for the vast majority of amide ¹⁵N, ¹H correlations since from the ¹H^N transverse relaxation point of view, the proposed pulse scheme in Fig. 1a is approximately only 2 ms longer than the gradient selected and sensitivity-enhanced ¹⁵N-HSQC due to the applied selective methyl pulses. Assuming a $T_{2,\rm HN}$ of 40 ms, the expected sensitivity loss will be less than 5%. Figure 2 shows excerpts from 1D traces along ¹H axis of ¹⁵N/¹³C_m-HSQC and ¹⁵N-HSQC spectra of human ubiquitin. Both spectra were recorded using 8 transients yielding nearly identical experimental time, i.e. 10 min. The experimental results are in close agreement with theoretical considerations in ubiquitin as appreciated for K6, T7, R54 and E64 residues shown in Fig. 2. The attainable

Fig. 2 Comparison of representative $F_{2}({}^{1}H)$ traces of four amide ${}^{15}N$, ${}^{1}H$ correlations in human ubiquitin recorded at 600 MHz using (**a**) the time-shared ${}^{15}N/{}^{13}C_{m}$ -HSQC pulse sequence of Fig. 1a–a', and (**b**) sensitivity-enhanced ${}^{15}N$ -HSQC experiment (Kay et al. 1992). The spectra were scaled to have identical noise floor so that the attainable sensitivity is directly comparable

sensitivities between ${}^{15}N/{}^{13}C_m$ -HSQC and the conventional ${}^{15}N$ -HSQC do not deviate more than $\pm 5\%$.

In case of methyl ¹³C–¹H correlations, a small sensitivity loss in comparison to the conventional ¹³C-HSQC experiment is inevitable if an equal number of scans are used for both experiments. This can be understood by realizing that the time-shared experiment in Fig. 1a is approximately 9–10 ms (gradient refocusing delay $+4(\Delta-\tau)$ + $2\Delta'$) longer than the corresponding ¹³C-HSQC experiment. This is due to the fact that in addition to the gradient refocusing delay, each concatenated INEPT step is ca. 1.5 ms longer than in the conventional ¹³C-HSOC, assuming ${}^{1}J_{\rm NH}/{}^{1}J_{\rm CH}m \sim 90/123$ Hz. However, it should be noted that in the schemes of Fig. 1a-a'' and b-b', the methyl proton magnetization is in slowly relaxing H_{z}^{m} state during the final INEPT step ($2\Delta' \sim 4-5.3$ ms), which minimizes the sensitivity loss i.e., the methyl proton magnetization is susceptible to T_2 relaxation for ~3–5 ms longer than in the conventional ¹³C-HSQC experiment. This leads to sensitivity loss by 10–15%, assuming $T_{2, H}m \sim 30$ ms. However, as two times more scans per unit time can be invested in a time-shared ¹⁵N/¹³C-HSOC experiment, the overall sensitivity will be increased. We recorded the proposed timeshared ¹⁵N/¹³C_m-HSQC and the conventional ¹³C-HSQC experiments on 0.2 mM human ubiquitin with an equal number of transients, yielding virtually identical experimental time. It is noteworthy that the protein concentration is only 20 μ M with respect to the ¹³C isotope as fractional (10%) ¹³C enrichment was employed. Indeed, a small sensitivity loss (5-10%) was observed as can be seen in Fig. 3, where 1D traces along ¹H axis are shown for several methyl correlations. This loss is also partly governed by the relaxation of $2H_z^m C_z$ coherence during κt_1 period as ¹³C spectral width was set 1.4 times larger than ¹⁵N spectral width. Nevertheless, as demonstrated even for the much larger maltose binding protein, a gain in attainable sensitivity can be obtained as the number of scans can be doubled per unit time using the time-shared approach (supplementary material).

We also compared the performance of the proposed ${}^{15}N/{}^{13}C_m$ -HSQC experiment against the time-shared ${}^{15}N/{}^{13}C$ -HSQC experiment by Griesinger and co-workers (Sattler et al., 1995) and the well-established gradient selected, sensitivity-enhanced ${}^{13}C$ -HSQC with small ${}^{15}N$, ${}^{13}C$ (10%) labeled SH3 domain of Eps8L1 (see supplementary material).

We employed the proposed time-shared $^{15}\text{N}/^{13}\text{C}_{\text{m}}$ -HSQC experiment (Fig. 1a+a') for mapping the proteinligand binding interface of the SH3 of human Eps8L1 with its target peptide. Relatively dilute protein concentration, ~0.2 mM, of uniformly ^{15}N and fractionally ^{13}C labeled Eps8L1-SH3 was used. Thus, with respect to methyl ^{13}C labeling (~10%) the sample concentration was ~20 μM . The $^{15}\text{N}/^{13}\text{C}_{\text{m}}$ -HSQC experiment was recorded at each titration point i.e., after addition of target peptide into the protein sample (Fig. 4). It can be readily appreciated that addition of the ligand induces significant perturbations in ^{15}N , ^{1}H chemical shift but also in the ^{13}C , ^{1}H methyl correlations for several residues. The observed perturbations in the chemical shifts of ^{15}N , ^{1}H and methyl ^{13}C , ^{1}H

Fig. 3 Comparison of representative $F_2(^{1}H)$ traces of through methyl ^{13}C , ^{1}H correlations in human ubiquitin recorded at 600 MHz using (a) the time-shared $^{15}N/^{13}C_m$ -HSQC pulse sequence of Fig. 1a–a', and (b) conventional ^{13}C -HSQC experiment (Bodenhausen and Ruben 1980). The spectra were scaled to have identical noise floor so that the attainable sensitivity is directly comparable. The corresponding resonances are indicated with assignments

correlations demonstrates that the target peptide is tightly binding to the canonical binding site of the SH3 domain (Aitio et al. unpublished results).

Although the sensitivity of methyl correlations on such a dilute sample is excellent for binding epitope mapping, there are some additional aspects that require further consideration in comparison to the labeling scheme proposed by Hajduk et al (2000). First, homonuclear ${}^{13}C{}^{-13}C$ couplings decrease the sensitivity and resolution for Val

v1. Leu δ 1. Ile. Thr and Ala methyl groups. Second, in the labeling strategy proposed by Hajduk et al., the spectral crowding will be less serious as methyl groups of Ala, Met, Thr and Ile $\gamma 2$ are absent. Third, the isotopic abundance of ¹³C is approx. 9–10 fold smaller with respect to ligand. The first issue can be partly addressed, although not attempted here, by decoupling of Thr ${}^{13}C\beta$ and Ala ¹³C α resonances during the t_1 period in order to enhance sensitivity and resolution of the methyl groups of these residues. Furthermore, the methyl groups of Ala, Met, Thr and Ile $\gamma 2$ are important structural probes. This is demonstrated for A17 and I57 in Fig. 4b'-b'', which provide a complementary view for chemical shift perturbations observed for NH of R18 (Fig. 4a'). On the other hand, methyl ¹³C, ¹H correlation map can be used for determining the binding epitope of the ligand simultaneously. By using an excess of ligand the emergence of signals originating from the ligand can be observed. In Fig. 4b, the signal, indicated with an arrow, stems from the methyl group of a C-terminal Ile residue of the peptide ligand. Intensity of this methyl signal increases as a function of increasing peptide concentration with no significant chemical shift perturbation or line broadening, which indicates that it is not located within the binding epitope. On the other hand, the methyl signals of an N-terminal Val, located in the binding interface, become detectable as broadened resonances only, when a larger excess of peptide (5:1) is used (data not shown).

It has been shown earlier that stereo-specific assignment of diastereotopic methyl groups is of utmost importance in structure calculations. Stereo-specific assignment of methyl groups in leucine and valine residues can be obtained using biosynthetically 10% ¹³C labeled sample (Neri et al. 1989; Senn et al. 1989). Owing to different metabolic pathways in *E. coli* the $\gamma 1$ methyl groups of value and $\delta 1$ methyl groups of leucine exhibit ¹³C-¹³C scalar couplings whereas the $\gamma 2$ and $\delta 2$ do not, respectively (Neri et al. 1989). Figure 4 demonstrates that in case of small proteins such as SH3, the stereo-specific assignment of methyl groups in Leu and Val residues can readily be made using the same relatively dilute protein sample. Thus, uniform ¹⁵N and fractional 10% ¹³C labeling scheme can be utilized for protein ligand interaction studies, stereo-specific assignment of prochiral methyl groups, and also for the backbone assignment as recently proposed by Iwai and Fiaux (2007). The approach is especially attractive in single case studies where the ¹⁵N labeling procedure already exists, thus no additional steps in sample preparation are required. As the preparation of fractionally 10% ¹³C labeled sample is also cost-effective, we reckon that this kind of sample can efficiently be used for screening protein ligand interactions by observing chemical shift perturbations simultaneously on amide ¹⁵N, ¹H and methyl ¹³C, ¹H correlations.

Fig. 4 15 N, 1 H (a) and methyl ^{13}C , ^{1}H (**b**) correlation maps of SH3 domain free in solution (red color) and in 1:2 SH3:peptide (complex with the target peptide) (black color). Representative expansions from amide (a') and methyl (b') and b") regions of SH3 show chemical shift perturbations as a function of increasing peptide concentration, the spectra recorded at each titration point are color coded and shown overlaid; 1:0 (red), 1:0.2 (blue), 1:1 (green) and 1:2 (black). Assignments for cross peaks shown in expansions are indicated. The two signals for L10 arise from the two conformers present in the SH3 domain in both free and bound form. An arrowhead points to the methyl resonance originating from the ligand in 2:1 ratio

In case of larger proteins such as MBP, sensitivity losses due to rapid spin relaxation will become more pronounced and consequently the attainable sensitivity gain becomes smaller than the theoretical 1.41 (See supplementary material). The sensitivity gain close to the theoretical maximum in ¹⁵N, ¹H correlations can be reached for some residues although for the great majority of the correlations sensitivity gain is $\sim 15-25\%$. The sensitivity gain becomes smaller for methyl ¹³C, ¹H correlation as faster transverse relaxation becomes more costly due longer pulse sequence with respect to the ¹³C-HSQC. On larger non-deuterated proteins with $\tau_{\rm c} > 15$ ns, the sensitivity gain for methyl ¹³C, ¹H correlations is 5-30%. It can be anticipated that it would be beneficial to utilize methyl ¹³C, ¹H TROSY (Tugarinov et al. 2003) together with ¹⁵N-HMQC for large ¹⁵N, ²H, ILVmethyl ¹³C labeled proteins, but we did not test this approach here.

Conclusions

We have presented new NMR building blocks that can be utilized in experiments detecting simultaneously ¹⁵N, ¹H

and methyl ¹³C, ¹H correlations. The pulse schemes provide theoretically optimal coherence transfer separately for IS spin system i.e., amide ¹⁵N, ¹H correlations, and I₃S spin system i.e., methyl ¹³C, ¹H correlations. The proposed pulse schemes were implemented in time-shared ${}^{15}N/{}^{13}C_m$ -HSQC and TROSY experiments and applied to three proteins. We observed significant sensitivity improvement with small proteins and to smaller extent even on 42 kDa MBP/ β -Cyclodextrin complex. This suggests that timeshared ¹⁵N/¹³C_m-HSQC or TROSY pulse schemes can be used as building blocks for higher dimensionality NOESY experiments. The proposed methodology can also be very helpful for binding interface mapping by monitoring simultaneously perturbations in ${}^{15}N/{}^{1}H$ and methyl ${}^{13}C/{}^{1}H$ chemical shifts on uniformly ¹⁵N and fractionally 10% ¹³C labeled proteins, as demonstrated for the SH3 domain titrated with the target peptide. In this way, the sample typically used for stereo-specific assignment of diastereotopic methyl groups of leucines and valines can be utilized for binding studies.

Acknowledgments This work was financially supported by the grant 106852 (P. P.) from the Academy of Finland. P. W. is partly

supported by a fellowship from the National Graduate School in informational and structural biology of Finland.

References

- Andersson P, Annila A, Otting G (1998) An α/β -HSQC- α/β experiment for spin-state selective editing of IS cross peaks. J Magn Reson 133:364–367
- Bodenhausen G, Ruben J (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189
- Boelens R, Burgering M, Fogh RH, Kaptein R (1994) Time-saving methods for heteronuclear multidimensional NMR of (¹³C, ¹⁵N) doubly labeled proteins. J Biomol NMR 4:201–213
- Farmer II, BT (1991) Simultaneous [¹³C, ¹⁵N]-HMQC, a pseudotriple-resonance experiment. J Magn Reson 93:635–641
- Farmer II, BT, Mueller L (1994) Simultaneous acquisition of [¹³C, ¹⁵N]- and [¹⁵N, ¹⁵N]-separated 4D gradient-enhanced NOESY spectra in proteins. J Biomol NMR 4:673–687
- Frueh DP, Vosburg DA, Walsh CT, Wagner G (2006) Determination of all nOes in ¹H-¹³C-Me-ILV-U-²H-¹⁵N proteins with two time-shared experiments. J Biomol NMR 34:31–40
- Gardner KH, Konrat R, Rosen MK, Kay LE (1996) An (H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated ¹⁵N, ¹³C-labeled proteins. J Biomol NMR 8:351–356
- Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141
- Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated ¹⁵N-, ¹³C-, ²H-labeled proteins. J Biomol NMR 13:369–374
- Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly ¹³C/¹⁵N-enriched proteins. J Biomol NMR 3:185–204
- Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing ¹³C-labeled methyl groups. J Am Chem Soc 122:7898–7904
- Iwai H, Fiaux J (2007) Use of biosynthetic fractional ¹³C-labeling for backbone NMR assignment of proteins. J Biomol NMR 37: 187–193
- Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665
- Kupče E, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson B 106:300–303
- Kupče E, Wagner G (1995) Wideband homonuclear decoupling in protein spectra. J Magn Reson B 109:329–333
- Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J Magn Reson 85:393–399
- Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional ¹³C labeling. Biochemistry 28:7510–7516
- Nietlispach D (2005) Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection TROSY scheme. J Biomol NMR 31:161–166
- Nolis P, Parella T (2007) Simultaneous α/β spin-state selection for 13 C and 15 N from a time-shared HSQC-IPAP experiment. J Biomol NMR 37:65–77

- Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93:151–170
- Pascal SM, Muhandiram DR, Yamazaki T, Forman-Kay JD, Kay LE (1994) Simultaneous acquisition of ¹⁵N- and ¹³C-edited NOE spectra of proteins dissolved in H₂O. J Magn Reson B103:197–201
- Pervushin K, Riek R, Senn H, Wider G, Wüthrich K (1997) Attenuated T₂ relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371
- Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665
- Sattler M, Maurer M, Schleucher J, Griesinger C (1995) A simultaneous ¹⁵N, ¹H- and ¹³C, ¹H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J Biomol NMR 5:97–102
- Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306
- Senn H, Werner B, Messerle BA, Weber C, Traber R, Wüthrich K (1989) Stereospecific assignment of the methyl ¹H NMR lines of valine and leucine in polypeptides by nonrandom ¹³C labelling. FEBS Lett 249:113–118
- Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552
- Sørensen OW (1990) Aspects and prospects of multidimensional time-domain spectroscopy. J Magn Reson 89:210–216
- Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Crosscorrelated relaxation enhanced ¹H-¹³C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428
- Uhrín D, Bramham J, Winder SJ, Barlow P (2000) Simultaneous CT-¹³C and VT-¹⁵N chemical shift labelling: Application to 3D NOESY-CH₃NH and 3D ¹³C,¹⁵N HSQC-NOESY-CH₃NH. J Biomol NMR 18:253–259
- Würtz P, Permi P (2007) SESAME-HSQC for simultaneous measurement of NH and CH scalar and residual dipolar couplings. Magn Reson Chem 45:289–295
- Xia Y, Man D, Zhu G (2001) 3D Haro-NOESY-CH₃NH and Caro-NOESY-CH₃NH experiments for double labeled proteins. J Biomol NMR 19:355–360
- Xia Y, Yee A, Arrowsmith CH, Gao X (2003) ¹HC and ¹HN total NOE correlations in a single 3D NMR experiment. ¹⁵N and ¹³C time-sharing in t1 and t2 dimensions for simultaneous data acquisition. J Biomol NMR, 193–203
- Yang D, Kay LE (1999) Improved ¹HN-detected triple resonance TROSY-based experiments. J Biomol NMR 13:3–10

Supplementary

- Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592
- Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing ¹³C-labeled methyl groups. J Am Chem Soc 122:7898–7904
- Kay LE (2001) Nuclear magnetic resonance methods for high molecular weight proteins: a study involving a complex of maltose binding protein and beta-cyclodextrin. Methods Enzymol 339:174–203